datamol.utils
¶
disable_on_os(os_names)
¶
A decorator to disable a function raising an error if the OS detected is not supported.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
os_names |
Union[str, List[str]]
|
OS names to disable this function. Valid OS names are: |
required |
Source code in datamol/utils/decorators.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
JobRunner
¶
Source code in datamol/utils/jobs.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
is_sequential
property
¶
Check whether the job is sequential or parallel
__call__(*args, **kwargs)
¶
Run job using the n_jobs attribute to determine regime
Source code in datamol/utils/jobs.py
153 154 155 156 157 158 159 |
|
__init__(n_jobs=-1, batch_size='auto', prefer=None, progress=False, total=None, tqdm_kwargs=None, **job_kwargs)
¶
JobRunner with sequential/parallel regimes. The multiprocessing backend use joblib which allows taking advantage of its features, while the progress bar use tqdm
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_jobs |
Optional[int]
|
Number of process. Use 0 or None to force sequential. Use -1 to use all the available processors. For details see https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation |
-1
|
batch_size |
Union[int, str]
|
Whether to batch |
'auto'
|
prefer |
Optional[str]
|
Choose from ['processes', 'threads'] or None. Default to None.
Soft hint to choose the default backend if no specific backend
was selected with the parallel_backend context manager. The
default process-based backend is 'loky' and the default
thread-based backend is 'threading'. Ignored if the |
None
|
progress |
bool
|
whether to display progress bar |
False
|
total |
Optional[int]
|
The number of elements in the iterator. Only used when |
None
|
tqdm_kwargs |
Optional[dict]
|
Any additional arguments supported by the |
None
|
**job_kwargs |
Any
|
Any additional arguments supported by |
{}
|
Example:
import datamol as dm
runner = dm.JobRunner(n_jobs=4, progress=True, prefer="threads")
results = runner(lambda x: x**2, [1, 2, 3, 4])
Source code in datamol/utils/jobs.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
get_iterator_length(data)
staticmethod
¶
Attempt to get the length of an iterator
Source code in datamol/utils/jobs.py
176 177 178 179 180 181 182 183 184 185 |
|
parallel(callable_fn, data, arg_type=None, **fn_kwargs)
¶
Run job in parallel
Parameters:
Name | Type | Description | Default |
---|---|---|---|
callable_fn |
callable
|
function to call |
required |
data |
iterable
|
input data |
required |
arg_type |
str
|
function argument type ('arg'/None or 'args' or 'kwargs') |
None
|
**fn_kwargs |
dict
|
optional keyword argument to pass to the callable funciton |
{}
|
Source code in datamol/utils/jobs.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
sequential(callable_fn, data, arg_type=None, **fn_kwargs)
¶
Run job in sequential version
Parameters:
Name | Type | Description | Default |
---|---|---|---|
callable_fn |
callable
|
function to call |
required |
data |
iterable
|
input data |
required |
arg_type |
str
|
function argument type ('arg'/None or 'args' or 'kwargs') |
None
|
**fn_kwargs |
dict
|
optional keyword argument to pass to the callable funciton |
{}
|
Source code in datamol/utils/jobs.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
wrap_fn(fn, arg_type=None, **fn_kwargs)
staticmethod
¶
Small wrapper around a callable to properly format it's argument
Source code in datamol/utils/jobs.py
73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
parallelized(fn, inputs_list, scheduler='processes', n_jobs=-1, batch_size='auto', progress=False, arg_type='arg', total=None, tqdm_kwargs=None, **job_kwargs)
¶
Run a function in parallel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fn |
Callable
|
The function to run in parallel. |
required |
inputs_list |
Iterable[Any]
|
List of inputs to pass to |
required |
scheduler |
str
|
Choose between ["processes", "threads"]. Defaults to None which uses the default joblib "loky" scheduler. |
'processes'
|
n_jobs |
Optional[int]
|
Number of process. Use 0 or None to force sequential. Use -1 to use all the available processors. For details see https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation |
-1
|
batch_size |
Union[int, str]
|
Whether to automatically batch |
'auto'
|
progress |
bool
|
Display a progress bar. Defaults to False. |
False
|
arg_type |
str
|
One of ["arg", "args", "kwargs]:
- "arg": the input is passed as an argument: |
'arg'
|
total |
Optional[int]
|
The number of elements in the iterator. Only used when |
None
|
tqdm_kwargs |
Optional[dict]
|
Any additional arguments supported by the |
None
|
**job_kwargs |
Any
|
Any additional arguments supported by |
{}
|
Returns:
Type | Description |
---|---|
Sequence[Optional[Any]]
|
The results of the execution as a list. |
Source code in datamol/utils/jobs.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|
parallelized_with_batches(fn, inputs_list, batch_size, scheduler='processes', n_jobs=-1, progress=False, arg_type='arg', total=None, tqdm_kwargs=None, flatten_results=True, joblib_batch_size='auto', **job_kwargs)
¶
Run a function in parallel using batches.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fn |
Callable
|
The function to run in parallel. It must accept a batch of |
required |
inputs_list |
Iterable[Any]
|
List of inputs to pass to |
required |
batch_size |
int
|
Batch size on which to run |
required |
scheduler |
str
|
Choose between ["processes", "threads"]. Defaults to None which uses the default joblib "loky" scheduler. |
'processes'
|
n_jobs |
Optional[int]
|
Number of process. Use 0 or None to force sequential. Use -1 to use all the available processors. For details see https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation |
-1
|
progress |
bool
|
Display a progress bar. Defaults to False. |
False
|
arg_type |
str
|
One of ["arg", "args", "kwargs]:
- "arg": the input is passed as an argument: |
'arg'
|
total |
Optional[int]
|
The number of elements in the iterator. Only used when |
None
|
tqdm_kwargs |
Optional[dict]
|
Any additional arguments supported by the |
None
|
flatten_results |
bool
|
Whether to flatten the results. |
True
|
joblib_batch_size |
Union[int, str]
|
It corresponds to the |
'auto'
|
**job_kwargs |
Any
|
Any additional arguments supported by |
{}
|
Returns:
Type | Description |
---|---|
Sequence[Optional[Any]]
|
The results of the execution as a list. |
Source code in datamol/utils/jobs.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
watch_duration
¶
A Python decorator to measure execution time with logging capability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
log |
bool
|
Whether to log the measured duration. |
True
|
log_human_duration |
bool
|
Whether to log duration in a human way depending on the amount. |
True
|
Example:
def fn(n):
for i in range(n):
print(i)
time.sleep(0.2)
with dm.utils.perf.watch_duration(log=True) as w:
fn(5)
print(w.duration)
Source code in datamol/utils/perf.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|