Skip to content

datamol.io

open_df(path, **kwargs)

Open a dataframe file whatever its filetype from csv, excel, parquet, json, sdf.

Parameters:

Name Type Description Default
path str

path to the file.

required
**kwargs Any

keyword arguments to pass to the underlying reader.

{}
Source code in datamol/io.py
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
def open_df(path: str, **kwargs: Any) -> pd.DataFrame:
    """Open a dataframe file whatever its filetype from
    `csv, excel, parquet, json, sdf`.

    Args:
        path: path to the file.
        **kwargs: keyword arguments to pass to the underlying reader.
    """

    filetype = _guess_filetype(path)

    data = None
    if filetype == "csv":
        data = pd.read_csv(path, **kwargs)
    elif filetype == "excel":
        data = pd.read_excel(path, **kwargs)
    elif filetype == "parquet":
        data = pd.read_parquet(path, **kwargs)
    elif filetype == "json":
        data = pd.read_json(path, **kwargs)
    elif filetype == "sdf":
        kwargs.setdefault("as_df", True)
        data = dm.read_sdf(path, **kwargs)
    else:
        raise ValueError(f"The file type of {path} is not supported.")

    data = cast(pd.DataFrame, data)

    return data

read_csv(urlpath, smiles_column=None, mol_column='mol', **kwargs)

Read a CSV file.

Parameters:

Name Type Description Default
urlpath Union[str, PathLike, IO]

Path to a file or a file-like object. Path can be remote or local.

required
smiles_column Optional[str]

Use this column to build a mol column.

None
mol_column str

Name to give to the mol column. If not None a mol column will be build. Avoid when loading a very large file.

'mol'
**kwargs Any

Arguments to pass to pd.read_csv().

{}

Returns:

Name Type Description
df DataFrame

a pandas.DataFrame

Source code in datamol/io.py
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def read_csv(
    urlpath: Union[str, os.PathLike, IO],
    smiles_column: Optional[str] = None,
    mol_column: str = "mol",
    **kwargs: Any,
) -> pd.DataFrame:
    """Read a CSV file.

    Args:
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        smiles_column: Use this column to build a mol column.
        mol_column: Name to give to the mol column. If not None a mol column will be build.
            Avoid when loading a very large file.
        **kwargs: Arguments to pass to `pd.read_csv()`.

    Returns:
        df: a `pandas.DataFrame`
    """

    df = pd.read_csv(urlpath, **kwargs)
    df = cast(pd.DataFrame, df)

    if smiles_column is not None:
        PandasTools.AddMoleculeColumnToFrame(df, smiles_column, mol_column)

    return df

read_excel(urlpath, sheet_name=0, smiles_column=None, mol_column='mol', **kwargs)

Read an excel file.

Parameters:

Name Type Description Default
urlpath Union[str, PathLike, IO]

Path to a file or a file-like object. Path can be remote or local.

required
sheet_name Optional[Union[str, int, list]]

see pandas.read_excel() doc.

0
mol_column str

Name to give to the mol column. If not None a mol column will be build. Avoid when loading a very large file.

'mol'
mol_column str

name to give to the mol column.

'mol'
**kwargs Any

Arguments to pass to pd.read_excel().

{}

Returns:

Name Type Description
df DataFrame

a pandas.DataFrame

Source code in datamol/io.py
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def read_excel(
    urlpath: Union[str, os.PathLike, IO],
    sheet_name: Optional[Union[str, int, list]] = 0,
    smiles_column: Optional[str] = None,
    mol_column: str = "mol",
    **kwargs: Any,
) -> pd.DataFrame:
    """Read an excel file.

    Args:
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        sheet_name: see `pandas.read_excel()` doc.
        mol_column: Name to give to the mol column. If not None a mol column will be build.
            Avoid when loading a very large file.
        mol_column: name to give to the mol column.
        **kwargs: Arguments to pass to `pd.read_excel()`.

    Returns:
        df: a `pandas.DataFrame`
    """

    df = pd.read_excel(urlpath, sheet_name=sheet_name, **kwargs)
    df = cast(pd.DataFrame, df)

    if smiles_column is not None:
        PandasTools.AddMoleculeColumnToFrame(df, smiles_column, mol_column)

    return df

read_mol2file(urlpath, sanitize=True, cleanup_substructures=True, remove_hs=True, fail_if_invalid=False)

Read a Mol2 File

Parameters:

Name Type Description Default
urlpath Union[str, PathLike, IO]

Path to a file or a file-like object. Path can be remote or local.

required
sanitize bool

Whether to sanitize the molecules.

True
remove_hs bool

Whether to remove the existing hydrogens in the SDF files.

True
cleanup_substructures bool

Whether to clean up substructure in the Mol2 Files.

True
fail_if_invalid bool

If set to true, the parser will raise an exception if the molecule is invalid instead of returning None.

False
Source code in datamol/io.py
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def read_mol2file(
    urlpath: Union[str, os.PathLike, IO],
    sanitize: bool = True,
    cleanup_substructures: bool = True,
    remove_hs: bool = True,
    fail_if_invalid: bool = False,
) -> List[Mol]:
    """Read a Mol2 File

    Args:
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        sanitize: Whether to sanitize the molecules.
        remove_hs: Whether to remove the existing hydrogens in the SDF files.
        cleanup_substructures: Whether to clean up substructure in the Mol2 Files.
        fail_if_invalid: If set to true, the parser will raise an exception if the molecule is invalid
            instead of returning None.
    """

    block = []
    mols = []
    with fsspec.open(urlpath, compression="infer") as f:
        f = cast(IO, f)
        fReadLines = f.readlines()
        # reversing due to ambiguous end line for mol2 files
        fReadLines.reverse()
        for line in fReadLines:
            # ignores any header info
            if b"#" not in line:
                block.append(str(line, "utf-8"))
            # since reversed, this is the 'end' a mol2
            if b"@<TRIPOS>MOLECULE" in line:
                block.reverse()
                mol2block = ",".join(block).replace(",", "")
                mol = rdmolfiles.MolFromMol2Block(
                    mol2block,
                    sanitize=sanitize,
                    removeHs=remove_hs,
                    cleanupSubstructures=cleanup_substructures,
                )
                if mol is None and fail_if_invalid:
                    raise ValueError(f"Invalid molecule: {mol2block}")
                mols.append(mol)
                block = []

    mols.reverse()
    return mols

read_molblock(molblock, sanitize=True, strict_parsing=True, remove_hs=True, fail_if_invalid=False)

Read a Mol block.

Note that potential molecule properties are not read.

Parameters:

Name Type Description Default
molblock str

String containing the Mol block.

required
sanitize bool

Whether to sanitize the molecules.

True
strict_parsing bool

If set to false, the parser is more lax about correctness of the contents.

True
remove_hs bool

Whether to remove the existing hydrogens in the SDF files.

True
fail_if_invalid bool

If set to true, the parser will raise an exception if the molecule is invalid instead of returning None.

False
Source code in datamol/io.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def read_molblock(
    molblock: str,
    sanitize: bool = True,
    strict_parsing: bool = True,
    remove_hs: bool = True,
    fail_if_invalid: bool = False,
) -> Optional[dm.Mol]:
    """Read a Mol block.

    Note that potential molecule properties are **not** read.

    Args:
        molblock: String containing the Mol block.
        sanitize: Whether to sanitize the molecules.
        strict_parsing: If set to false, the parser is more lax about correctness of the contents.
        remove_hs: Whether to remove the existing hydrogens in the SDF files.
        fail_if_invalid: If set to true, the parser will raise an exception if the molecule is invalid
            instead of returning None.
    """

    mol = rdmolfiles.MolFromMolBlock(
        molblock,
        sanitize=sanitize,
        removeHs=remove_hs,
        strictParsing=strict_parsing,
    )

    if mol is None and fail_if_invalid:
        raise ValueError(f"Invalid molecule: {molblock}")

    return mol

read_pdbblock(molblock, sanitize=True, remove_hs=True, flavor=0, proximity_bonding=True)

Read a PDB string block.

Parameters:

Name Type Description Default
molblock str

String containing the Mol block.

required
sanitize bool

Whether to sanitize the molecules.

True
remove_hs bool

Whether to remove the existing hydrogens in the SDF files.

True
flavor int

RDKit flavor options.

0
proximity_bonding bool

Whether to toggles automatic proximity bonding.

True
Source code in datamol/io.py
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
def read_pdbblock(
    molblock: str,
    sanitize: bool = True,
    remove_hs: bool = True,
    flavor: int = 0,
    proximity_bonding: bool = True,
) -> dm.Mol:
    """Read a PDB string block.

    Args:
        molblock: String containing the Mol block.
        sanitize: Whether to sanitize the molecules.
        remove_hs: Whether to remove the existing hydrogens in the SDF files.
        flavor: RDKit flavor options.
        proximity_bonding: Whether to toggles automatic proximity bonding.
    """

    mol = rdmolfiles.MolFromPDBBlock(
        molblock,
        sanitize=sanitize,
        removeHs=remove_hs,
        flavor=flavor,
        proximityBonding=proximity_bonding,
    )
    return mol

read_pdbfile(urlpath, sanitize=True, remove_hs=True, flavor=0, proximity_bonding=True)

Read a PDB file.

Parameters:

Name Type Description Default
urlpath Union[str, PathLike]

Path to a file or a file-like object. Path can be remote or local.

required
sanitize bool

Whether to sanitize the molecules.

True
remove_hs bool

Whether to remove the existing hydrogens in the SDF files.

True
flavor int

RDKit flavor options.

0
proximity_bonding bool

Whether to toggles automatic proximity bonding.

True

Returns:

Name Type Description
mol Mol

a molecule

Source code in datamol/io.py
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
def read_pdbfile(
    urlpath: Union[str, os.PathLike],
    sanitize: bool = True,
    remove_hs: bool = True,
    flavor: int = 0,
    proximity_bonding: bool = True,
) -> Mol:
    """Read a PDB file.

    Args:
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        sanitize: Whether to sanitize the molecules.
        remove_hs: Whether to remove the existing hydrogens in the SDF files.
        flavor: RDKit flavor options.
        proximity_bonding: Whether to toggles automatic proximity bonding.

    Returns:
        mol: a molecule
    """

    with fsspec.open(urlpath, "r") as f:
        f = cast(IO, f)
        mol = read_pdbblock(
            f.read(),
            sanitize=sanitize,
            remove_hs=remove_hs,
            flavor=flavor,
            proximity_bonding=proximity_bonding,
        )
    return mol

read_sdf(urlpath, sanitize=True, as_df=False, smiles_column='smiles', mol_column=None, include_private=False, include_computed=False, strict_parsing=True, remove_hs=True, max_num_mols=None, discard_invalid=True, n_jobs=1)

Read an SDF file.

Note: This function is meant to be used with dataset that fit in-memory. For a more advanced usage we suggest you to use directly Chem.ForwardSDMolSupplier.

Parameters:

Name Type Description Default
urlpath Union[str, PathLike, IO]

Path to a file or a file-like object. Path can be remote or local.

required
sanitize bool

Whether to sanitize the molecules.

True
as_df bool

Whether to return a list mol or a pandas DataFrame.

False
smiles_column Optional[str]

Name of the SMILES column. Only relevant if as_df is True.

'smiles'
mol_column Optional[str]

Name of the mol column. Only relevant if as_df is True.

None
include_private bool

Include private properties in the columns. Only relevant if as_df is True.

False
include_computed bool

Include computed properties in the columns. Only relevant if as_df is True.

False
strict_parsing bool

If set to false, the parser is more lax about correctness of the contents.

True
remove_hs bool

Whether to remove the existing hydrogens in the SDF files.

True
max_num_mols Optional[int]

Maximum number of molecules to read from the SDF file. Read all by default when set to None.

None
discard_invalid bool

Discard the molecules that failed to be read correctly. Otherwise, invalid molecules will be loaded as None.

True
n_jobs Optional[int]

Optional number of jobs for parallelization of to_df. Leave to 1 for no parallelization. Set to -1 to use all available cores. Only relevant is as_df is True

1
Source code in datamol/io.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def read_sdf(
    urlpath: Union[str, os.PathLike, IO],
    sanitize: bool = True,
    as_df: bool = False,
    smiles_column: Optional[str] = "smiles",
    mol_column: Optional[str] = None,
    include_private: bool = False,
    include_computed: bool = False,
    strict_parsing: bool = True,
    remove_hs: bool = True,
    max_num_mols: Optional[int] = None,
    discard_invalid: bool = True,
    n_jobs: Optional[int] = 1,
) -> Union[List[Mol], pd.DataFrame]:
    """Read an SDF file.

    Note: This function is meant to be used with dataset that fit _in-memory_.
    For a more advanced usage we suggest you to use directly `Chem.ForwardSDMolSupplier`.

    Args:
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        sanitize: Whether to sanitize the molecules.
        as_df: Whether to return a list mol or a pandas DataFrame.
        smiles_column: Name of the SMILES column. Only relevant if `as_df` is True.
        mol_column: Name of the mol column. Only relevant if `as_df` is True.
        include_private: Include private properties in the columns.  Only relevant if
            `as_df` is True.
        include_computed: Include computed properties in the columns.  Only relevant if
            `as_df` is True.
        strict_parsing: If set to false, the parser is more lax about correctness of the contents.
        remove_hs: Whether to remove the existing hydrogens in the SDF files.
        max_num_mols: Maximum number of molecules to read from the SDF file. Read all by default when set
            to `None`.
        discard_invalid: Discard the molecules that failed to be read correctly. Otherwise,
            invalid molecules will be loaded as `None`.
        n_jobs: Optional number of jobs for parallelization of `to_df`. Leave to 1 for no
            parallelization. Set to -1 to use all available cores. Only relevant is `as_df` is True
    """

    # File-like object
    if isinstance(urlpath, io.IOBase):
        supplier = rdmolfiles.ForwardSDMolSupplier(
            urlpath,
            sanitize=sanitize,
            strictParsing=strict_parsing,
            removeHs=remove_hs,
        )
        mols = _get_supplier_mols(supplier, max_num_mols)

    # Regular local or remote paths
    else:
        with fsspec.open(urlpath, compression="infer") as f:
            supplier = rdmolfiles.ForwardSDMolSupplier(
                f,
                sanitize=sanitize,
                strictParsing=strict_parsing,
                removeHs=remove_hs,
            )
            mols = _get_supplier_mols(supplier, max_num_mols)

    # Discard None values
    if discard_invalid:
        mols = [mol for mol in mols if mol is not None]

    # Convert to dataframe
    if as_df:
        return dm.to_df(
            mols,
            smiles_column=smiles_column,
            mol_column=mol_column,
            include_private=include_private,
            include_computed=include_computed,
            n_jobs=n_jobs,
        )  # type: ignore

    return mols

read_smi(urlpath)

Read a list of smiles from am .smi file.

Note: We strongly recommend you to use dm.read_csv or pandas.read_csv instead of dm.read_smi since .smi files are CSV-like format. The only difference are the default settings which changes:

  • The default separator is a space instead of a comma ,.
  • The headers of the column are not included.

By modifying the args of dm.read_csv(), you will be able to read an .smi files.

Parameters:

Name Type Description Default
urlpath Union[str, Path, IOBase, OpenFile]

Path to a file or a file-like object. Path can be remote or local.

required
Source code in datamol/io.py
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def read_smi(
    urlpath: Union[str, pathlib.Path, io.IOBase, fsspec.core.OpenFile],
) -> Sequence[Mol]:
    """Read a list of smiles from am `.smi` file.

    Note: We **strongly** recommend you to use `dm.read_csv` or `pandas.read_csv` instead
    of `dm.read_smi` since `.smi` files are CSV-like format. The only difference are the
    default settings which changes:

    - The default separator is a space ` ` instead of a comma `,`.
    - The headers of the column are not included.

    By modifying the args of `dm.read_csv()`, you will be able to read an `.smi` files.

    Args:
        urlpath: Path to a file or a file-like object. Path can be remote or local.
    """

    active_path = urlpath

    # NOTE(hadim): the temporary local file copy
    # is because `SmilesMolSupplier` does not support
    # using file-like object, only path.

    # Copy to a local temporary path if the path is a remote one.
    if not fsspec.utils.can_be_local(str(urlpath)):
        active_path = pathlib.Path(tempfile.mkstemp()[1])
        dm.utils.fs.copy_file(urlpath, active_path, force=True)

    # Read the molecules
    supplier = rdmolfiles.SmilesMolSupplier(str(active_path), titleLine=0)
    mols = [mol for mol in supplier if mol is not None]

    # Delete the local temporary path
    if not fsspec.utils.can_be_local(str(urlpath)):
        pathlib.Path(str(active_path)).unlink()

    return mols

save_df(data, path, **kwargs)

Save a dataframe file whatever its filetype from csv, excel, parquet, json, sdf.

Parameters:

Name Type Description Default
data DataFrame

dataframe to save.

required
path str

path to save the file.

required
**kwargs Any

additional arguments to pass that are specific to the file save type.

{}
Source code in datamol/io.py
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
def save_df(
    data: pd.DataFrame,
    path: str,
    **kwargs: Any,
):
    """Save a dataframe file whatever its filetype from
    `csv, excel, parquet, json, sdf`.

    Args:
        data: dataframe to save.
        path: path to save the file.
        **kwargs: additional arguments to pass that are specific to the file save type.
    """

    filetype = _guess_filetype(path)

    if filetype == "csv":
        kwargs.setdefault("index", False)
        data.to_csv(path, **kwargs)
    elif filetype == "excel":
        kwargs.setdefault("index", False)
        data.to_excel(path, **kwargs)
    elif filetype == "parquet":
        data.to_parquet(path, **kwargs)
    elif filetype == "json":
        data.to_json(path, **kwargs)
    elif filetype == "sdf":
        dm.to_sdf(data, path, **kwargs)
    else:
        raise ValueError(f"The file type of {path} is not supported.")

to_molblock(mol, include_stereo=True, conf_id=-1, kekulize=True, force_V3000=False)

Convert a molecule to a mol block string.

Note that any molecule properties are lost.

Parameters:

Name Type Description Default
mol Mol

A molecule.

required
include_stereo bool

Toggles inclusion of stereochemical information in the output.

True
conf_id int

Selects which conformation to output.

-1
kekulize bool

Triggers kekulization of the molecule before it's written, as suggested by the MDL spec.

True
force_V3000 bool

Force generation a V3000 mol block (happens automatically with more than 999 atoms or bonds).

False
Source code in datamol/io.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def to_molblock(
    mol: Mol,
    include_stereo: bool = True,
    conf_id: int = -1,
    kekulize: bool = True,
    force_V3000: bool = False,
):
    """Convert a molecule to a mol block string.

    Note that any molecule properties are lost.

    Args:
        mol: A molecule.
        include_stereo: Toggles inclusion of stereochemical information in the output.
        conf_id: Selects which conformation to output.
        kekulize: Triggers kekulization of the molecule before it's written,
            as suggested by the MDL spec.
        force_V3000: Force generation a V3000 mol block (happens automatically
            with more than 999 atoms or bonds).
    """

    molblock = rdmolfiles.MolToMolBlock(
        mol,
        includeStereo=include_stereo,
        confId=conf_id,
        kekulize=kekulize,
        forceV3000=force_V3000,
    )

    return molblock

to_pdbblock(mol, conf_id=-1)

Convert a molecule to a PDB string block.

Parameters:

Name Type Description Default
mol Mol

A molecule.

required
conf_id int

Selects which conformation to use.

-1
Source code in datamol/io.py
415
416
417
418
419
420
421
422
423
def to_pdbblock(mol: Mol, conf_id: int = -1) -> str:
    """Convert a molecule to a PDB string block.

    Args:
        mol: A molecule.
        conf_id: Selects which conformation to use.
    """
    molblock = rdmolfiles.MolToPDBBlock(mol, confId=conf_id)
    return molblock

to_pdbfile(mol, urlpath, conf_id=-1)

Save a molecule to a PDB file.

Parameters:

Name Type Description Default
mol Mol

A molecule.

required
urlpath Union[str, PathLike]

Path to a file or a file-like object. Path can be remote or local.

required
conf_id int

Selects which conformation to use.

-1
Source code in datamol/io.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
def to_pdbfile(
    mol: Mol,
    urlpath: Union[str, os.PathLike],
    conf_id: int = -1,
):
    """Save a molecule to a PDB file.

    Args:
        mol: A molecule.
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        conf_id: Selects which conformation to use.
    """
    molblock = to_pdbblock(mol, conf_id=conf_id)
    with fsspec.open(urlpath, "w") as f:
        f = cast(IO, f)
        f.write(molblock)

to_sdf(mols, urlpath, smiles_column='smiles', mol_column=None)

Write molecules to a file.

Parameters:

Name Type Description Default
mols Union[Mol, Sequence[Mol], DataFrame]

a dataframe, a molecule or a list of molecule.

required
urlpath Union[str, PathLike, IO]

Path to a file or a file-like object. Path can be remote or local.

required
smiles_column Optional[str]

Column name to extract the molecule.

'smiles'
mol_column Optional[str]

Column name to extract the molecule. It takes precedence over smiles_column.

None
Source code in datamol/io.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
def to_sdf(
    mols: Union[Mol, Sequence[Mol], pd.DataFrame],
    urlpath: Union[str, os.PathLike, IO],
    smiles_column: Optional[str] = "smiles",
    mol_column: Optional[str] = None,
):
    """Write molecules to a file.

    Args:
        mols: a dataframe, a molecule or a list of molecule.
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        smiles_column: Column name to extract the molecule.
        mol_column: Column name to extract the molecule. It takes
            precedence over `smiles_column`.
    """

    if isinstance(mols, pd.DataFrame):
        mols = dm.from_df(mols, smiles_column=smiles_column, mol_column=mol_column)

    elif isinstance(mols, Mol):
        mols = [mols]

    # Filter out None values
    mols = [mol for mol in mols if mol is not None]

    # File-like object
    if isinstance(urlpath, io.IOBase):
        writer = rdmolfiles.SDWriter(urlpath)
        for mol in mols:
            writer.write(mol)
        writer.close()

    # Regular local or remote paths
    else:
        with fsspec.open(urlpath, mode="w") as f:
            writer = rdmolfiles.SDWriter(f)
            for mol in mols:
                writer.write(mol)
            writer.close()

to_smi(mols, urlpath, error_if_empty=False)

Save a list of molecules in an .smi file.

Note: We strongly recommend you to use dm.to_csv instead of dm.to_smi since .smi files are CSV-like format. The only difference are the default settings which changes:

  • The default separator is a space instead of a comma ,.
  • The headers of the column are not included.

By modifying the args of dm.to_csv(), you will be able to save a SMI compatible file.

Parameters:

Name Type Description Default
mols Sequence[Mol]

a list of molecules.

required
urlpath Union[str, PathLike, IO]

Path to a file or a file-like object. Path can be remote or local.

required
error_if_empty bool

whether to raise and error if the input list is empty.

False
Source code in datamol/io.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
def to_smi(
    mols: Sequence[Mol],
    urlpath: Union[str, os.PathLike, IO],
    error_if_empty: bool = False,
):
    """Save a list of molecules in an `.smi` file.

    Note: We **strongly** recommend you to use `dm.to_csv` instead
    of `dm.to_smi` since `.smi` files are CSV-like format. The only difference are the
    default settings which changes:

    - The default separator is a space ` ` instead of a comma `,`.
    - The headers of the column are not included.

    By modifying the args of `dm.to_csv()`, you will be able to save a SMI compatible file.

    Args:
        mols: a list of molecules.
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        error_if_empty: whether to raise and error if the input list is empty.
    """

    if len(mols) == 0 and error_if_empty:
        raise ValueError("The list of mols/smiles provided is empty.")

    # Filter out None values
    mols = [mol for mol in mols if mol is not None]

    # File-like object
    if isinstance(urlpath, io.IOBase):
        writer = rdmolfiles.SmilesWriter(urlpath, includeHeader=False, nameHeader="")
        for mol in mols:
            writer.write(mol)
        writer.close()

    # Regular local or remote paths
    else:
        with fsspec.open(urlpath, "w") as f:
            writer = rdmolfiles.SmilesWriter(f, includeHeader=False, nameHeader="")
            for mol in mols:
                writer.write(mol)
            writer.close()

to_xlsx(mols, urlpath, smiles_column='smiles', mol_column='mol', mol_size=[300, 300])

Write molecules to an Excel file with a molecule column as an RDKit rendered image.

Parameters:

Name Type Description Default
mols Union[Mol, Sequence[Mol], DataFrame]

a dataframe, a molecule or a list of molecule.

required
urlpath Union[str, PathLike]

Path to a file or a file-like object. Path can be remote or local.

required
smiles_column Optional[str]

Column name to extract the molecule.

'smiles'
mol_column str

Column name to extract the molecule. It takes precedence over smiles_column. Column name to write the RDKit rendered image. If none, the molecule images are not written.

'mol'
Source code in datamol/io.py
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
def to_xlsx(
    mols: Union[Mol, Sequence[Mol], pd.DataFrame],
    urlpath: Union[str, os.PathLike],
    smiles_column: Optional[str] = "smiles",
    mol_column: str = "mol",
    mol_size: List[int] = [300, 300],
):
    """Write molecules to an Excel file with a molecule column as an RDKit rendered
    image.

    Args:
        mols: a dataframe, a molecule or a list of molecule.
        urlpath: Path to a file or a file-like object. Path can be remote or local.
        smiles_column: Column name to extract the molecule.
        mol_column: Column name to extract the molecule. It takes
            precedence over `smiles_column`.
            Column name to write the RDKit rendered image. If none,
            the molecule images are not written.
    """

    if isinstance(mols, Mol):
        mols = [mols]

    if isinstance(mols, Sequence):
        mols = [mol for mol in mols if mol is not None]
        mols = dm.to_df(mols, smiles_column=smiles_column, mol_column=mol_column)

    if mols is None or mols.empty:  # type: ignore
        raise ValueError("No molecules to write")

    with fsspec.open(urlpath, mode="wb") as f:
        PandasTools.SaveXlsxFromFrame(mols, f, molCol=mol_column, size=mol_size)