Skip to content

datamol.scaffold

Working with molecular scaffolds

Generate fuzzy scaffold with enforceable group that needs to appear in the core, forcing to keep the full side chain if required

Parameters:

Name Type Description Default
mols List[rdkit.Chem.rdchem.Mol]

List of all molecules

required
enforce_subs List[str]

List of substructure to enforce on the scaffold.

None
n_atom_cuttoff int

Minimum number of atom a core should have.

8
additional_templates List[rdkit.Chem.rdchem.Mol]

Additional template to use to generate scaffolds.

None
ignore_non_ring bool

Whether to ignore atom no in murcko ring system, even if they are in the framework.

False
mcs_params Dict[Any, Any]

Arguments of MCS algorithm.

None

Returns:

Type Description
  • set - scaffolds - All found scaffolds in the molecules as valid smiles.
  • Dict[Dict] - scaffold_infos - Infos on the scaffold mapping, ignoring any side chain that had to be enforced. Key corresponds to generic scaffold smiles Values at ['smarts'] corresponds to smarts representation of the true scaffold (from MCS) Values at ['mols'] corresponds to list of molecules matching the scaffold
  • Dict[List] - scaffold_to_group - Map between each generic scaffold and the R-groups decomposition row.
Source code in datamol/scaffold/_fuzzy.py
def fuzzy_scaffolding(
    mols: List[Chem.rdchem.Mol],
    enforce_subs: List[str] = None,
    n_atom_cuttoff: int = 8,
    additional_templates: List[Chem.rdchem.Mol] = None,
    ignore_non_ring: bool = False,
    mcs_params: Dict[Any, Any] = None,
):
    """Generate fuzzy scaffold with enforceable group that needs to appear
    in the core, forcing to keep the full side chain if required

    Args:
        mols: List of all molecules
        enforce_subs: List of substructure to enforce on the scaffold.
        n_atom_cuttoff: Minimum number of atom a core should have.
        additional_templates: Additional template to use to generate scaffolds.
        ignore_non_ring: Whether to ignore atom no in murcko ring system, even if they are in the framework.
        mcs_params: Arguments of MCS algorithm.

    Returns:
        - `set` - `scaffolds` - All found scaffolds in the molecules as valid smiles.
        - `Dict[Dict]` - `scaffold_infos` - Infos on the scaffold mapping, ignoring any side chain that had
                to be enforced. Key corresponds to generic scaffold smiles
                Values at ['smarts'] corresponds to smarts representation of the true scaffold (from MCS)
                Values at ['mols'] corresponds to list of molecules matching the scaffold
        - `Dict[List]` - `scaffold_to_group` - Map between each generic scaffold and the R-groups decomposition row.
    """

    # NOTE(hadim): consider parallelize this (if possible).
    # NOTE(hadim): consider refactoring this function in smaller reusable functions.

    if enforce_subs is None:
        enforce_subs = []

    if additional_templates is None:
        additional_templates = []

    if mcs_params is None:
        mcs_params = {}

    rg_params = rdRGroupDecomposition.RGroupDecompositionParameters()
    rg_params.removeAllHydrogenRGroups = True
    rg_params.removeHydrogensPostMatch = True
    rg_params.alignment = rdRGroupDecomposition.RGroupCoreAlignment.MCS
    rg_params.matchingStrategy = rdRGroupDecomposition.RGroupMatching.Exhaustive
    rg_params.rgroupLabelling = rdRGroupDecomposition.RGroupLabelling.AtomMap
    rg_params.labels = rdRGroupDecomposition.RGroupLabels.AtomIndexLabels

    core_query_param = AdjustQueryParameters()
    core_query_param.makeDummiesQueries = True
    core_query_param.adjustDegree = False
    core_query_param.makeBondsGeneric = True

    # group molecules by they generic Murcko scaffold, allowing
    # side chain that contains cycle (might be a bad idea)
    scf2infos = collections.defaultdict(dict)
    scf2groups = {}
    all_scaffolds = set([])

    for m in mols:
        generic_m = MurckoScaffold.MakeScaffoldGeneric(m)
        scf = MurckoScaffold.GetScaffoldForMol(m)
        try:
            scf = MurckoScaffold.MakeScaffoldGeneric(scf)
        except:
            pass

        if ignore_non_ring:
            rw_scf = Chem.RWMol(scf)
            atms = [a.GetIdx() for a in rw_scf.GetAtoms() if not a.IsInRing()]
            atms.sort(reverse=True)
            for a in atms:
                rw_scf.RemoveAtom(a)
            scfs = list(rdmolops.GetMolFrags(rw_scf, asMols=False))
        else:
            scfs = [dm.to_smiles(scf)]

        # add templates mols if exists:
        for tmp in additional_templates:
            tmp = dm.to_mol(tmp)
            tmp_scf = MurckoScaffold.MakeScaffoldGeneric(tmp)
            if generic_m.HasSubstructMatch(tmp_scf):
                scfs.append(dm.to_smiles(tmp_scf))

        for scf in scfs:
            if scf2infos[scf].get("mols"):
                scf2infos[scf]["mols"].append(m)
            else:
                scf2infos[scf]["mols"] = [m]

    for scf in scf2infos:
        # cheat by adding murcko as last mol always
        popout = False
        mols = scf2infos[scf]["mols"]
        if len(mols) < 2:
            mols = mols + [MurckoScaffold.GetScaffoldForMol(mols[0])]
            popout = True

        # compute the MCS of the cluster
        mcs = rdFMCS.FindMCS(
            mols,
            atomCompare=rdFMCS.AtomCompare.CompareAny,
            bondCompare=rdFMCS.BondCompare.CompareAny,
            completeRingsOnly=True,
            **mcs_params,
        )

        mcsM = Chem.MolFromSmarts(mcs.smartsString)
        mcsM.UpdatePropertyCache(False)
        Chem.SetHybridization(mcsM)

        if mcsM.GetNumAtoms() < n_atom_cuttoff:
            continue

        scf2infos[scf]["smarts"] = dm.to_smarts(mcsM)
        if popout:
            mols = mols[:-1]

        core_groups = []
        # generate rgroups based on the mcs core
        success_mols = []
        try:
            rg = rdRGroupDecomposition.RGroupDecomposition(mcsM, rg_params)
            for i, analog in enumerate(mols):
                analog.RemoveAllConformers()
                res = rg.Add(analog)
                if not (res < 0):
                    success_mols.append(i)
            rg.Process()
            core_groups = rg.GetRGroupsAsRows()
        except Exception:
            pass

        mols = [mols[i] for i in success_mols]
        scf2groups[scf] = core_groups
        for mol, gp in zip(mols, core_groups):
            core = gp["Core"]
            acceptable_groups = [
                a.GetAtomMapNum()
                for a in core.GetAtoms()
                if (a.GetAtomMapNum() and not a.IsInRing())
            ]

            rgroups = [gp[f"R{k}"] for k in acceptable_groups if f"R{k}" in gp.keys()]
            if enforce_subs:
                rgroups = [
                    rgp
                    for rgp in rgroups
                    if not any([len(rgp.GetSubstructMatch(frag)) > 0 for frag in enforce_subs])
                ]
            try:
                scaff = trim_side_chain(mol, AdjustQueryProperties(core, core_query_param), rgroups)
            except:
                continue
            all_scaffolds.add(dm.to_smiles(scaff))

    return all_scaffolds, scf2infos, scf2groups

Trim list of side chain from a molecule.

Source code in datamol/scaffold/_fuzzy.py
def trim_side_chain(mol: Chem.rdchem.Mol, core, unwanted_side_chains):
    """Trim list of side chain from a molecule."""

    mol = Chem.AddHs(mol)

    match = mol.GetSubstructMatch(core)
    map2idx = {}
    map2nei = {}
    unwanted2map = {}
    for patt in unwanted_side_chains:
        unwanted2map[patt] = [a.GetAtomMapNum() for a in patt.GetAtoms() if a.GetAtomMapNum()]
    unwanted_mapping = list(itertools.chain.from_iterable(unwanted2map.values()))

    for atom in core.GetAtoms():
        num = atom.GetAtomMapNum()
        if num and num in unwanted_mapping:
            mol_atom_idx = match[atom.GetIdx()]
            map2idx[mol_atom_idx] = num
            nei_atoms = mol.GetAtomWithIdx(mol_atom_idx).GetNeighbors()
            map2nei[mol_atom_idx] = [n.GetIdx() for n in nei_atoms if n.GetIdx() in match]

    emol = Chem.EditableMol(mol)
    for atom_idx, atom_map in map2idx.items():
        dummy = Chem.rdchem.Atom("*")
        dummy.SetAtomMapNum(atom_map)
        nei_idx = map2nei.get(atom_idx, [None])[0]
        if nei_idx:
            bond = mol.GetBondBetweenAtoms(atom_idx, nei_idx)
            emol.RemoveBond(atom_idx, nei_idx)
            new_ind = emol.AddAtom(dummy)
            emol.AddBond(nei_idx, new_ind, bond.GetBondType())

    mol = emol.GetMol()
    mol = Chem.RemoveHs(mol)
    query_param = AdjustQueryParameters()
    query_param.makeDummiesQueries = False
    query_param.adjustDegree = False
    query_param.aromatizeIfPossible = True
    for patt, _ in unwanted2map.items():
        cur_frag = dm.fix_mol(patt)
        mol = Chem.DeleteSubstructs(mol, cur_frag, onlyFrags=True)

    return dm.keep_largest_fragment(mol)