77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255 | def fuzzy_scaffolding(
mols: List[Chem.rdchem.Mol],
enforce_subs: Optional[List[str]] = None,
n_atom_cuttoff: int = 8,
additional_templates: Optional[List[Mol]] = None,
ignore_non_ring: bool = False,
mcs_params: Optional[Dict[Any, Any]] = None,
) -> Tuple[set, pd.DataFrame, pd.DataFrame]:
"""Generate fuzzy scaffold with enforceable group that needs to appear
in the core, forcing to keep the full side chain if required
Args:
mols: List of all molecules
enforce_subs: List of substructure to enforce on the scaffold.
n_atom_cuttoff: Minimum number of atom a core should have.
additional_templates: Additional template to use to generate scaffolds.
ignore_non_ring: Whether to ignore atom no in murcko ring system, even if they are in the framework.
mcs_params: Arguments of MCS algorithm.
Returns:
- `set` - `scaffolds` - All found scaffolds in the molecules as valid smiles.
- `pd.DataFrame` - `df_scaffold_infos_transposed` - A pandas dataframe with Infos on the scaffold mapping, ignoring
any side chain that had to be enforced. Key corresponds to generic scaffold smiles.
Values at ['smarts'] corresponds to smarts representation of the true scaffold (from MCS)
Values at ['mols'] corresponds to list of molecules matching the scaffold
Values at ['scf'] corresponds to the list of scaffolds from MurckoScaffold.GetScaffoldForMol
- `pd.DataFrame` - `df_scaffold_groups` - A pandas dataframe with Map between each generic scaffold
and the R-groups decomposition row.
"""
# NOTE(hadim): consider parallelize this (if possible).
# NOTE(hadim): consider refactoring this function in smaller reusable functions.
if enforce_subs is None:
enforce_subs = []
if additional_templates is None:
additional_templates = []
if mcs_params is None:
mcs_params = {}
rg_params = rdRGroupDecomposition.RGroupDecompositionParameters()
rg_params.removeAllHydrogenRGroups = True
rg_params.removeHydrogensPostMatch = True
rg_params.alignment = rdRGroupDecomposition.RGroupCoreAlignment.MCS
rg_params.matchingStrategy = rdRGroupDecomposition.RGroupMatching.Exhaustive
rg_params.rgroupLabelling = rdRGroupDecomposition.RGroupLabelling.AtomMap
rg_params.labels = rdRGroupDecomposition.RGroupLabels.AtomIndexLabels
core_query_param = AdjustQueryParameters()
core_query_param.makeDummiesQueries = True
core_query_param.adjustDegree = False
core_query_param.makeBondsGeneric = True
# group molecules by they generic Murcko scaffold, allowing
# side chain that contains cycle (might be a bad idea)
scf2infos = collections.defaultdict(dict)
scf2groups = {}
all_scaffolds = set([])
for m in mols:
generic_m = MurckoScaffold.MakeScaffoldGeneric(m)
scf = MurckoScaffold.GetScaffoldForMol(m)
try:
scf = MurckoScaffold.MakeScaffoldGeneric(scf)
except:
pass
if ignore_non_ring:
rw_scf = Chem.RWMol(scf)
atms = [a.GetIdx() for a in rw_scf.GetAtoms() if not a.IsInRing()]
atms.sort(reverse=True)
for a in atms:
rw_scf.RemoveAtom(a)
scfs = list(rdmolops.GetMolFrags(rw_scf, asMols=False))
else:
scfs = [to_smiles(scf)]
# add templates mols if exists:
for tmp in additional_templates:
tmp = to_mol(tmp)
tmp_scf = MurckoScaffold.MakeScaffoldGeneric(tmp)
if generic_m.HasSubstructMatch(tmp_scf):
scfs.append(to_smiles(tmp_scf))
for scf in scfs:
if scf2infos[scf].get("mols"):
scf2infos[scf]["mols"].append(m)
else:
scf2infos[scf]["mols"] = [m]
for scf in scf2infos:
# cheat by adding murcko as last mol always
popout = False
mols = scf2infos[scf]["mols"]
if len(mols) < 2:
mols = mols + [MurckoScaffold.GetScaffoldForMol(mols[0])]
popout = True
# compute the MCS of the cluster
mcs = rdFMCS.FindMCS(
mols,
atomCompare=rdFMCS.AtomCompare.CompareAny,
bondCompare=rdFMCS.BondCompare.CompareAny,
completeRingsOnly=True,
**mcs_params,
)
mcsM = from_smarts(mcs.smartsString)
mcsM.UpdatePropertyCache(False)
Chem.SetHybridization(mcsM)
if mcsM.GetNumAtoms() < n_atom_cuttoff:
continue
scf2infos[scf]["smarts"] = to_smarts(mcsM)
if popout:
mols = mols[:-1]
core_groups = []
# generate rgroups based on the mcs core
success_mols = []
try:
rg = rdRGroupDecomposition.RGroupDecomposition(mcsM, rg_params)
for i, analog in enumerate(mols):
analog.RemoveAllConformers()
res = rg.Add(analog)
if not (res < 0):
success_mols.append(i)
rg.Process()
core_groups = rg.GetRGroupsAsRows()
except Exception:
pass
mols = [mols[i] for i in success_mols]
scf2groups[scf] = core_groups
for mol, gp in zip(mols, core_groups):
core = gp["Core"]
acceptable_groups = [
a.GetAtomMapNum()
for a in core.GetAtoms()
if (a.GetAtomMapNum() and not a.IsInRing())
]
rgroups = [gp[f"R{k}"] for k in acceptable_groups if f"R{k}" in gp.keys()]
if enforce_subs is not None:
rgroups = [
rgp
for rgp in rgroups
if not any([len(rgp.GetSubstructMatch(frag)) > 0 for frag in enforce_subs])
]
try:
scaff = trim_side_chain(mol, AdjustQueryProperties(core, core_query_param), rgroups)
except:
continue
all_scaffolds.add(to_smiles(scaff))
# if user wants a dataframe turned on...
# there are processing routines to make the df more readable.
df_infos = pd.DataFrame(scf2infos)
df_infos_t = df_infos.transpose()
df_infos_t.insert(0, "scf", list(scf2infos.keys()), True)
df_infos_t.reset_index(inplace=True, drop=True)
# relabel index and column labels to
# to be more readable
df_infos_t.index.name = "index"
df_groups = pd.DataFrame.from_dict(scf2groups, orient="index")
df_groups.reset_index(inplace=True, drop=True)
# relabel index and column labels to
# to be more readable
df_groups.index.name = "index"
df_groups.columns = [f"{str(h)}_core_group" for h in df_groups.columns]
# enter the scf columns at the first column for df_groups
df_groups.insert(0, "scf", list(scf2groups.keys()), True)
return all_scaffolds, df_infos_t, df_groups
|